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I. INTRODUCTION

1.1 DETECTION THEORY

The problem of the detection of a seismic signal, sometimes

present, sometimes absent, in the presence of noise may be conveniently

discussed using the theory z,' statistical detection. (See Helstrom,

1968, as a good general referencu..) Based on a set of measurements, we

are trying to choose between two hypotheses:

H0 that the measurements consist only of noise

HI that the measurements consist of signal plus noise.

For discrete data, we can conveniently use matrix notation and represent

the set of measurements as a vector x with c,,aipoenents xi that are

the individual samples of the seismometer's output (the detector's in-

put).

f The number of components, N, in this vector is the number of samples

of the input that we consider (process) at one time. We can measure some-
thing about the characteristics or statistics of x over a given time

* interval, and a signal may be detected if, over this interval, these in-

put statistics are significantly different from what we would expect

from noise alone. Now, obviously, we will maximize this statistical

difference if we match this time interval to the finite duration of the

* iexpected seismic signal. This fundamental time duration, TD, is typ-

ically on the order of a second, and a quantity calculated over this

interval is often referred to as the "short term average" (STA) of the

input signal. Thus the number of components in the vector x will be

STD

At

where At is the sampling interval.

1
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The de•.cctor must decide between the hypothesis H0 and H1.

The correct strategy to use depends upon the cost or the ,-isk of
making the wrong decision. In seismic applications (as opposed to game
theory for example) the cost or risk of making the wrong decision is

impossible (or at least difficult) to quantify. Instead, what is
commonly done is to use the Neyman-Pearson strategy which maximizes
the probability of detection with a specified probability of being wrong -

a false alarm. Conceptually, we can think of the process of hypothesis

testing by using the probability density functions po(x) and pl(x)

of H0 and H1

RO 0 RI -- --

R0 (2 , .

Figure 1.1. Probability density function of the H0  and
H1 hypotheses.

The chance of error, Q0, caused by choosing H1 when H0  is true,
that is "detecting" a sigoal when one is not there, is called a false
alarm probability. It is given by

QO  po(x)dx (1.1)
,• 10
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Observe that:

1. The probability of false alarm, Q0, and the false alam

rate, FAR (number of false alarms per unit time), are

related by a time interval TD

Qo
FAR TD

where TD is the time interval (non overlapping) over' which

the "statistic" is calculated.

2. Increasing TD decreases FAR for a fi (ed QO but also de-

creases the time resolution of the detector.

3. Increasing TD also provides for more frequency resolution

for those detectors working in the frequency domain.

4. In the case where there is a signal present, increasing TD
will possibly decrease the signal-to-noise ratio (SNR) by

including more noise after the signal has died away.

The error, Q,. of choosing H. when H, is true, that 'is, not
detecting a signal when one is present, is given by

Q -. P0(X ) dx (1.2)

and the detection probability Q0 is

QD 1-Q 1 Q (1.3)

The Neyman-Pearson strategy of decision theory leads us to search for

the minimum Q for a specified QO" Ideally, for each detector we would

like to be able to construct a diagram like Figure 1.2 which in detection

theory is called the "receiver operating characteristic" (ROC).

3
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m tjj
I.-

LU

0 1
Q0

FALSE ALARM PROBABILITY

Figure 1.2. The receiver operating chiiaracteristic 'ROC).

The slope of the ROC curve is

d 0  A p1(xo (1.4)

which is called the "likelihood ratio". This is easy to see as

x

-0o
Q0.l Q, f/ Pl(X)dx 4 Pl(X-)dx= Pl(X)dx

If A(X)p 0 (x)dx (1.5)

Q J f po(x)dx (1.6)

4
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Thus

dQD A (x.p o(I) and d (X)

0 0

so

dQD (1.7)

For example, in the case of a Gaussian signal in Gaussian

noise,

1 -

P (2n)n/ 2 et ( (1.8)

(2w) n/2 /de RI 2 - 1 (.

where and are the covariance matrices of noise and signal plus

noise and xt is the transpose of x. We see that the likelihood function

s a A(x)-kexP(j xt(Rao Z:211)! ) (1.10)

is a monotonic function of the quadratic form •

_ (1.11)

where

As Helstrom (1968, p. 94) shows, the choice between hypotheses H0

and H can equally be based on any monotonic function of the likelihood

function A(x). The quantity that summarizes and replaces that
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data x themselves is temmed the detection statistic Clearly, then,

\H we could equally well use the quadratic form

xtAx

as our detection statistic.

We may generate this statistic by the action of a linear filter
H on the signal x followed by a device that forms the product

X)(H x (H x)

since this is

xt H H x xt Ax (1.13)

It may be shown that if A is a positive definite symmetric

matrix,

H- 0 (1.14)

where 0 is the diagonal matrix of the square roots of the eigenvalues

of A while Q is the matrix of normalized eigenvalues of A.

6
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1.2 THE FRIEBERGER DETECTOR

In an elegant work by Frieberger (1963) it is shown that the

quadratic form given by Eq. (1.11) can be approximated by a constant times

the integral

F Mw
SF~s(

Fx(w) F FM()] dw (1.15)

in the case where the signal and noise both have a Gaussian probability
density function. In this equation, Fx, FN and Fs are the power spectral

densities of the input, the noise alone, and the signal alone, respectively.

This detector can thus be implemented as illustrated in Figure 1.3. I
Sadaptive _ F e L >C H1

x(t) filter 1LowmC H0te

Figure 1.3. Implementation of the Frieberger detector. I
where the modulus of the frequency response of the adaptive filter is given

by:

• F MS•

[Fs() + FN)(1.16)

and the power meter is a quadratic integrator. Because of the squaring op-
eration, the filter phase response is irrelevant. Note that for a large SNR

ie, Fs(w) » FN(w)), this response is approximately 1/FN(w). It is

not the Weiner filter which is%/Fs(w)/(Fs(w) + whose task is not

to detect but rather to recover the signal.

What has become to be referred to as the "conventional power
detector" simply performs the function of the quadratic integrator with-

out Frieberger's pre-filter.

Over a short time interval (STA), say nLt, an estimate is made

of the variance. For the i th epoch, this is simply

7
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p1 t~ 1 x2X X xSPi " -Xi n

Jul

To take the place of the adaptive prefilter, the long term average

(LTA), say m nAt duration, is calculated in the absence of a seismic

event to provide an accurate estimate of the noise variance 2. The

ratio of these quantities, namely

P1

a

is then compared to a constant. For Gaussian random input data, this

number is the ratio of two chi-squared random variables with 2n and
2m n degrees of freedom. Thus, the ratio follows the F distribution

(Bendat and Piersol, 1971, p. 107). The expected value of the ratio is

unity, and its variance is a function of m and n. For noise that is uncor-
related with the seismic signal, the conventional power detector esti-

mates the statistic

i ~S+Nwhere

where S and N are the signal and noise variances.

If the STA and LTA are both estimates of the variance of a

normally distributed quantity, then the riatio STA/LIA is F - distributed

* Iwith vsvL degrees of freedom where

= TSTA/ At The number of samples in the STA

and
SI vL = TLTA/ At The number of samples in the LTA

Figure 1.4 shows the dependence of threshold level C of STA/LTA

on vL for v - 20 and three different false alarm probabilities, that is

Prob [STA/LTA<C] = P
0

81. sysrrms. SCIENCE AND soorrwAnt
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Two interesting features can Immediately be seen.

1. The , little to be gained in lengthening the LTA beyond

the "knee" of these curves. For example, suppose the STA
is I second for 20 sps data. Thus VL - 20. With an LTA of

only 6 seconds, v a 120 and the ratio STA/LTA will be less

than 2.03 99 percent of the time and less than 2.53 99.9 per-

cent of the time. Extending the LTA to an infinite period

(perfect estimate) only reduces the thresholds to 1.88 and

2.27 respectively -- only a 0.33db or 0.47db improvement.

2. The change in the threshold levels as a function of false

alarm Drobability is the other interesting feature. For
Vs 20 and = o ,Table 1.1 gives the FAR assuming a I

SL
STA of 1.8 seconds.

Table 1.1

Qo 5X10- 2  10"2 0 3 40-

FAR/hr 100 20 2 .2

Threshold
in db 1.96 2.74 3.56 6.5C

Thus, with this STA period, setting the threshold at about

3 will achieve a FAR of about one per hour.

The basic ideas presented here are all wel) known and form the

basis of almost all seismic detectors. The individual detectors dis-

cussed in later chapters differ in detail and implementation as each

uses different methods in attempting to optimize the probability of de-

tection for a fixed false alarm probability. They also reflect dif-

ferences in assumed noise models and input data sets. Obviously, a

•10
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detector for low SNR teleseismic pulses will be different from a high

SNR local event detector meant to be implemented in the microprocessor

of a field recorder.

1.3 TESTING DETECTORS

For each detector, we would like to prodluce the Receiver Operating
Characteristic (ROC) curves (Figure 1.2). Thelse may be readily

generated once the detector has been implemented. We simply generate

a synthetic data set containing noise plus signals at known times

and with specified SNR. Erough such data must be used to gather a

meaningful statistical sample of the detector's performance.

For a given synthetic test containing NE events, all with the

same SNR, each detector produces NF false alarms and ND detections

of which Nc are correct. Then

Nc

D Ei

FAR = NF • length of data set/At

By repeating the test with events covering a range of signal-to-noise

ratios, a family of curves, similar to the single ROC sketched in

Figure 1.2, mny be formed.

A reasonable way to compare various detection algorithms is to

test them against tiie theoretical "best" detector. Suppose that the

seismological problems were completely solved and the signal and arrival

time were perfectly known. Then the detection algorithm would have to

choose between

X(t) N(t) hypotheis H0

and
q X(t) S S(t) + N(t) hypothesis H,

SY S A
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where S(t) is completely known. Surely, we cannot expect to do better
than this.

Helstrom (1968) shows that in this case, a monotonic function of
the likelihood function is

T

G f q(t)X(t) dt (1.17)

where T is the detection window and q(t)'is a soluti,.a of

T

S(t) * q(u) 0(t-u) du (1.18)

where *(t-u) is the covariance of the stationary gaussian noise N(t).

The expected values of G under the hypotheses are

E(G/H,) 0

T

E(G/H 1) • J q(t) S(t) dt d 2

0

The variance is the same under both hypotheses

T T

Var G Jf q(u) q(t) E [N(u) N(t) dudt

00

r

T

f q(t) S(t) dt = d2  (1.19)

0

12

SYSTEMS. SCIrNCE AND SOFTWA~r



by equation 1.18 above. The p.d.fs of the detection statistic are

PO (G) - 4 d exp [-G/2d']

P, (G) " U exp r -(G-d 2) 2/2d 2J

and the false alarm and detection probabilities are

QO - erfc (Go/d)

QO 1 -erfc (d-Go/d) (.0

where G. is the decision level of the statistic G.

The parameter d is in fact the true signal-to-noise ratio. The

easiest way to see this is to consider the case where the signal S(t)

is zero outside the interval 0 to T. Then

St)- q(u) *(t-u) du

Then taking Fourier transforms and using the convolution theorem H

Q(W) -S__

and

Go1

.,q(t) §w e ei~t dw

A3
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Then equation 1.19 becomes

o.f I s,,,I
. 00 -eU0

S~which is simply the integral of the signai Fourier spectrum divided by the

noise power spectrum.

=i , Plts o Qdversus d for various QO and Qd versus QO for various d

:: (the receiver operating characteristics) are given in Figures 1.5 and 1.6.

r "
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II. IMPORTANT SEISMIC EVENT DETECTORS

We review in this section eight seismic detectiun algorithms which

have been developed and tested by various organizations over the past 15

years. Specifically, these are:

1. The IBM detector.

1. The Z detector.

3. The deflection detector.

4. The analytic envelope detector.

5. The Allen detector.

6. The Stewart detector.

7. The Walsh detector.

8. The MARS detector.

Most of these have been developed for the detection of teleseismic
signals recorded by short period seismometers. Much of the early work was

stImulated by the deployment of the LASA and NORSAR large aperature seismic

arrays but more recently emphasis has been placed on developing detection

algorithms to operate on single traces at the seismometer location. Such

detectors have been implemented on the SRO seismometers and several small
portable seismic recording systems. In these latter applications, imple-

mentation is often made on a mocroprocessor and so execution speed and

algorithm simplicity are at a premium..

In the following descriptions of the detection algorithms, we have

depended heavily on the reference given at the beginning of each sub-

section. Unless otherwise stated, text enclosed in quotes is taken from

these reports. In the references section at the end of Section IV, all

quoted literature is listed along with the abstracts of the principal

works. In Appendix A, a more complete bibliography is to be found.

2.1 IBM DETECTOR, VANDERKULK, et al. (1965)

This report describes the seismic det, .tion algorithm developed in
1965 by IBM for use on the LASA array and subsequently implemented at

16
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NORSAR. The LASA array consisted of 525 seismometers grouped into 21 sub-

arrays of 25 seismometers each. The computer system used for detection

has as its input some 300 beam outputs, the subarray vertical beams, and

the outputs from 21 single seismometers (one from each subarray) attenuated
to record large signals.

"The processing applied to a single LASA beam output can be

described as a filtering process designed to de-emphasize those frequency

components where the beam output signal-to-noise ratio is low compared to

Its maximum. The filtering process is followed by an integration opera-

tion in which either the square or the magnitude of the filtered beam

channel is integrated over a time interval of fixed duration. The re-

sulting single quantity must then be compared with a threshold value for

detection purposes."

i ' ' ' " 1>C

x - filter -- L - integrate -

Figure 2.1. The IBM detector.

This detector, schematically represented by a flow diagram in Figure

2.1, is quite close to the one prescribed by Frieberger (1963) as described

in Section 1.2, except that:

1. The filter used was not the optimum filter,

V FNw)MLFs(w) + FN()]

but simply V4I7FN() which is the large SNR limit of
the optimum; (In fact, according to Blandford (1980 Private

"Communication), IBM did not use an adaptive filter or even

a I/FN(W) filter but merely a bandpass.)

2. The absolute value of the filter's output was taken for compu-
tational efficiency (speed) rather than th3 square;

17
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3. The integrator was a "leaky" Intejrator implemented by a

digital recursive filter rather than a proper integrator.

Vanderkulk (1964) examined the effects of these three approximations.

The filter with an amplitude response of l/VFN-w' was applied only over

a band uI < < (42 and zero outside. The phase was arbitrary. To gauge

"the eftects of such a filter, the report assumed that FS(w)/FN(w)

peaked at frequencies u0 in the center of the band and fell off ex-

ponentially on either side so the ratio was L db below the peak at

Sand w2.

"Figure 2.2 depicts the graph of the loss versus L. As could be

expected, the graph shows a minimum: when L is small, the performance

of the noise-prewhitening filter suffers because too little of the

signal is passed; when L, and hence the bandwidth, is large, the per-
formance deteriorates because the filter passes too much noise.

Note that the loss in performance is less than 1 db when L is

between 2.2 db and 12 db. Thus, to assure a loss of less than 1 db, the

noise-prewhitening filter bandwidth must be large erough to include all
frequencies where the input signal-to-noise ratio is within 2.2 db of

its maximum, but must reject all frequencies where the signal-to-noise
ratio is more than 12 db below the maximum. Thus, in practice, a

comfortable frequency margin is allowed in which to achieve the filter

cutoff. The above result permits another interpretation as well. It
shows that those frequency components of the input channel where the

signal-to-noise ratio is more than 2.2 db below the peak value are

ineffective so far as signal detection is concerned. Therefore, the

signal processing which produced the input channel is allowed to be

arbitrarily degraded for those Yrequencies where the signal-to-noise

ratio is more than 2.2 db below the maximum, so long as the signal-to-

noise ratio in the region where it is within 2.2 db of the maximum is
not materially altered."

The effect of rectifying rather than squaring the output of the
prefilter was also investigated in this report.
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Figure 2.2. Loss in performance of the noise-prewhitening filter
for the IBM detector (after Vanderkulk, ett al., 1965).
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"When rectifying and integrating, the output produced is given by

T

R f xMt) dt (2.1)

0

When squaring and integrating, the output is given by

P - - (t) 2 dt. (2.2)

0

The channel trace, x(t), is assumed to be the sum of Gaussian stationary

signal (when present) and Gaussian stationary noise. The loss incurred

by applying rectified integration instead of squaring and integrating

is found by dividing the signal-to-noise ratio of P by that of R."...

"The resulting quotient, Q, is given by

+ + -- + - S/N) A, (2.3)AI2

,h ere

S- 2) 
-(t2 tl) dtI dt 2

S2 (2.4)= T T

f0f P(t2 - tl) 2 dtl dt 2

in which formula p(t 2 - t1) designates the correlation coefficient be-

tween x(tl) and x(t 2 ) when noise alone is present, and p(t 2 - tY)

designates the correlation coefficient between Ix(t 1 )I and jx(t 2 )1

when noise alone is present. Furthermore, S is the total signal

power, i.e.,

s f J s(f) df. '2.5)

0
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Likewise, N is the total noise power. Thus, S/N may be termed the

input signal-to-noise power ratio.

It is readily shown that

p^ ( P arcsine p +41l - 2~-1/1-1 (2.6)

from ohich it follows that

p2/(7 - 2) < ý < p2 (2.7)

Consequently, 1 < A < /tT z 1.07. Since the loss in performance is

10 logioQ db, this loss is given by the following expression:

Loss 10 log 1 [x1 .035] db, (2.8)

where the error due to equating A to 1.035 is less than 0.2 db." For

this model the loss in performance is not significantly affected by the

shape of the noise spectrum or by the choice of the intetration time T.

A graph of the loss versus the input signal-to-noise ratio S/N is

shown in Figure 2.3.

Finally, the effects of the leaky integrator were examined.

Most of the detectors that are implemented using sampled data use

recursive filters to simulate integrators. Typically, the output

Y. at time, ti is given by
1 1

|iYi (l - C)Yi_ + C Xi (2.9)

• I where C is a constant <1 and Xi is the input. In matrix notation
1

this can be approximated by

Y a M X (2.10)
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where

1 0 0 0 0...

(1 - C) 0 0 0 0

M (1 - C)' (I - C) 1 0 0 ... (2.11)

(1 - C)3  (1 - C)2  (1 - C) 1 0

The exponential integrating filter output can be represented by

Y =f x(u) 2 exp( t u) du (2.12)

while the straightforward power integration is given by

t+T
=Jt xu2 du . (2.13)

t

In order to assess the effect of finite signal duration, the signal

is taken to be a portion of duration of a Gaussian stationary process.

It follows that optimum processing (maximized signal-to-noise ratio) is pro-

duced by using the output Z with T = T and with the interval from t

to t + Ts exactly covering the signal time interval.

With this maximum possible signal-to-noise ratio as a standard,

the loss in performance resulting from the use of the exponentially de-

caying integrating filter (with T being arbitrary) is given by the

following expression:

,. 23 S
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This formula was obtained by computing the quotient of the maximum

possible signal-to-noise ratio and the signal-to-noise ratio of the
rectified integration output Y, with t being the endpoint of the

signal time interval. The loss is than equal to 10 times the logarithr
of this quotient. The preceding formula for the loss is an approximation

obtained by assuming that both Ts and T are large compared with the
reciprocal of the noise bandwidth (or, equivaiently, compared with thp

decay time of the noise autocorrelation function p(t)). Figure 2.4
is a graph of the loss versus T/T . The minimum loss occurs when

T = 0.80 Ts and is 0.45 db. The performance loss is less than 0.55 dbsIwhen T lies anywhere between 0.55 Ts and 1.10 TV. Thus, by
tolerating this loss, it is sufficient to implement this exponentially
decaying, integrating filter with a sequence of filter decay times T

which progresses by factors of two.

The separate performance loss considerations given above should
more properly have been combined to provide the simultaneous effect
of these three factors on the signal processing performance.

The only difference between the "IBM" detector and the conven-
tional power detector (see Section 1.2) is that the former takes the posi-
tive square root of xi (i.e., the absolute value, a computationally
efficient quantity) rather than the square. As we saw earlier, under a
simple model of the noise signal, the loss in performance caused by
taking 1xil instead of jxi2 is only about 1 db (0.05 m difference in

detection capability).

The IBM approximation to the conventional power detector is
basically the algorithm that is used at both NORSAR and SDAC.

The data sampled at 20 sps is first decimated (without filtering)
to 10 sps. The data is next passed through a recursive band pass filter

and further decimated to 5 sps. This is the input data stream to the
rectifier (absolute value)

Yi = Ixil where Ai = 0.2 sec. (2.15)

24SNj
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Figure 2.4. Performance loss of an exponential integrating filter
(after Vanderkulk, et al., 1965).
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these rectified quantities are then averaged into groups of three

rL ;'i= 5 where now Ai corresponds to (2.16)

r [ -i by 0.6 sec, i.e., a decimation
jui-Z by 3.

The three-point averages are then further averaged over three

0.6 second intervals (1.8 second) (i.e., no decimation) to form the

STA, which is updated every 0.6 second.

i SAi = ½ I • Aj corresponds to 0.6 sec (2.17)
SA YJ Ai corresponds to 0.6 sec

j=i-2

The long-term average, LTA, is formed by a first-order recursive
filter acting on the 0.6 second samples of the STA. However, there is a

further decimation by three so that the LTA filter output is derived

from statistically independent samples of the STA

S= (l-C) LT + C Aj corrFsponds to 0.6 sec

TTAi co;'responds to 1.8 sec

Typically, C is set for a 30 second time corstant:

1 0.06. (2.19)
CT 30

The decision algorithm exami.,•s the 0.6 second samples of STA

and compares this to the 1.8 secord samples of the LTA. If

STA > K* LTA (2.20)

* for Q out of QA successive tests an event is declared. Typically

Q/Q is set at 2/3 or 3/3 and K is approximately 3. Note that since

LTA is only updated every 1.8 second, it remains constant over this

test.

When an event iý declared, the time constant of the LTA re-

cursive filter is reduced typically to half its normal value until the

event is declared over. This is done to detect the later phases.

26
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2.2 "Z" DETECTOR, SWINDELL AND SNELL (1977)

The "Z" detector was the result of research to develop a constant

FAR (CFAR) algoritt|n for the Station Processor. This "detector is a

modification of a conventional power detector which detects siynals as

short-term-averaged (STA) signal power relative to long-tarm-averaged

(LTA) noise power preceding the signal. Statistical analyses of STA

noise fluctuations indicated that small deviations in the STA standard

deviation from LTA causes serious problems in controlling false alarms.

This sometimes leads to the unstable operation of convenitonal power de-

tectors. In some cases, such instability causes the detector to turn on

or to shut off for long periods of time. The "Z" detector was designed

to solve this problem by continuously adjusting the threshold of STA-

LTA to a fixed number of standard deviations of STA-LTA. Estimates of

the standard deviation are updated on a point-by-point basis. The "Z"

detector is also designed to control false alarms from the coda of large

",ignals." Basically, the detector statistic for noise input was modeled

s a log-normal process. The mean and variance of the statistic were used

1 transform the statistic to a zero-mean, unit variance quantity called

the "Z" statistic. Thus, for a single random variable x, the Z i
st-tistic is defined as 1

Z(x) = . (2.21)

1he idea for the logarithmic transformation came originally from LaCoss's

(19.2) observation that the STA values from the IBM detector looked to

be normal distributed. Of course, if the input signal were Gaussian,

and the STA values were a true estimate of the power, they would be
2X distributed. This distribution, for a small number of degrees

* of freedom, is not unlike a log normal distribution in appearance.

However, as the IBM STA algorithm does not, in fact, estimate power, Vut

rather averages the absolute value, LaCoss's empirical approach to the

correct distribution is reasonable.

In any event, the "Z" detector proceeds as follows:

1. The input data are band passed with a recursive filter.

This filter is centered at about 2 Hz and is between

27
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3 and 4 Hz wide. The principal purpose of the filter

is to remove the mean from the data. It is not chosen
"a la Frieberger'to optimize detectibility.

2. The beginning operation for the detection statistic is

a squaring rather than rectifying operation

Y x (2.22)

3. As in the NORSAR/SMC implementation of the conventional

power detector, the Y. are averaged over some gate N

by

Yj 1 Yi (2.23)

i=j-N

The time interval associated with Y is N times longer

than that associated with Y. M sets of these points

are then averaged to form the STA which yields

k

STAk E Yj (2.24)

j=k-M

STA is updated just as frequently as Y.

4. "The logarithm of the short-term average, STA, is passed to

the long-term background level estimator to be used for up-
dating the long-term estimate, p, of log STA and of the vari-

ance a2 , of log STA. Z is computed using p and a before

they are updated with the present value of log STA. Then a

sequential threshold test is performed. The first test com-

pares the absolute magnitude of z to the threshold value

of z, ZTH. This is to prevent the LTA from updating either

on true detections (positive z) or highly negative values

of z arising from the logarithm of very low powers which

28
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of zis heckd ad, i poitiv, adetetio isdeclared."

5. Te ffthste isa dtecionanalyzer which "suppresses multiple
declarations of detections from the same signal caused by coda
levels continuously exceeding the detection threshold, posts

new detection declarations if coda levels show unusual in-

creases ini level, and controls the LTA estimator to prevent
LTA estimates from being conteminated by coda energy."

The concept of a post detection processor, found in other detectors
as well, is important. It allows one to build a "front end" system that
is fast, which has a large FAR, but which culls the data stream to a
more manageable volume. In the "Z" detector, "the internal logic of the
analyzer is moderately complicated and is best understood by its action

on a typical signal (see Figure 2.5). It may be broken down further into
a coda suppressor and LTA controller.

When the input z crosses the threshold zTH the time is noted

and a timer is initiated. Aftter the specified time, the beam select

gate, has elapsed, the detection time and the peak value of z occurring

in this gate is stored for the beam selector's use. The beam selector

gate is operator adjustable and typically lasts ten seconds. Also at the

detection time, a second timer is initiated which defines a secondary
detection gate. (This gate is also operator adjustable; during this study,

15 seconds was used.)

Assume for the moment that the signal is small and the coda
level drops below the threshold a few seconds after the initial detection.

The situation now is: no detections are occurring at the z comparator,

there is remnant signal coda energy present, but it is decaying toward

the original noise level. When z becomes less than zTHS a third timer,

also operator adjustable, is initiated which defines the detector reset

time. After this time has elapsed, the detector is reset and any new

threshold crossing will be declared a new detection. For this study, a

* reset time of 20 seconds was used. The purpose of the reset time is to

prevent new detections from being declared because of "jitter" in the
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Figure 2.5. Coda supressor for the "Z" detector (after Swindell and
Snell, 1977).
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z values as they decay through the threshold. The reset time must be

greater than the secondary detection gate which in turn is greater than

the beam selector gate.

The reaction to a large signal where z remains above zT for
at least two secondary detection gate intervals is slightly moreI
elaborate. The goal is to monitor the coda level for the arrival of

secondary phases or signals from another event. The operating assumption

is that the coda level will decay fairly smoothly from its initial peak

except when new signals arrive. As each secondary detection gate lapses
(except the first one), the peak z in that gate is compared with the

peak value from the preceding gate. If it exceeds the old peak by some
specified amount (e.g., 6 dB, operator adjustable) than a new detection
is declared.

The LTA controller maintains the highest level of control of the

LTA estimator and its Job is to uxclude as much signal-related energy as
possible from the estimates of the mean and standard deviation of the
log STA for the background noise. Its action can also be described more

easily by example (refer to Figures 2.6 and 2.7). After computing z,I
the LTA estimator normally updates u~. and with every new datum :
except when inhibited. The threshold comparator issues an inhibit
commnand whenever Izi > zTH Finally, to insure that a very large signal
does not keep v frozen too long the freeze time is limited to some

maximum, say 10 minutes, which is also operator adjustable. When
* becomes unfrozen by any means, it assumes the present value of LTA

and normal updating resumes. Internal to the LTA estimator, there are

actually two separate estimates of mean and standard deviation of log STA.
* Using the mean as an example (the a2 estimate follows in parallel),

the two quantities are 1, and "LTA". Z is alwdys computed using IA.

Under conditions of noise with no inhibiting commiands from the

LTA controller, Pa and LTA are identical. When a detection occurs, the

dichotomy of LTA and v becomes apparent. Whenever Izi < zTH, LTA
updates but 4i remains frozen at least until the LTA reset time interval
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Figure 2.6. "Z" detector flow diagram (after Swindell and
Snell, 1977).
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Figure 2.7. "Z" detector LTA controller (after Swindell
and Snell, 1977).
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has elapsed. At the end of the reset time i test of the difference be-
tween LTA and p is made and pi remains frozen until that difference
becomes small enough. This maximum difference is called the secondary
reset function limit and is operator adjustable."

Evaluation of the "Z" detector was reported in Swindell anet ;nell
(1977) using data from the KSRS array during different periods .r the
year. They concluded that "the Z statistic algorithm prre"ces a
constant false alarm rare rather than a constant alarm ,jte and is es-
sentially independent of the noise field behavior. ',ie estimated mean
and variance of the noise which is used to cony-. c the basic detector
output to Z also provides information ',o.ul for estimating station
Derformance xe ,- .ia makes unnecessary a separate noise
level calculation for the power detector. Alarm rates may be set

independently for each beam (signal) to reflect differences in seismicity
or to give some beams (signals) higher sensitivity without affecting

overall alarm rate."

They also tested two different pre-detection band pass filters

and concluded that they caused no appreciable differences on the out-
come, nor did changes in the integration time of the STA process from 1.6

second to 3.2 seconds have appreciable effect.

Further tests of this automatic detector were conducted during
two months of field operation at DET 459 by Secoy (1978). Sax (1980)
reports that "at KSRS, 70 percent of the analyst picks were automatically
detected with 0.875 false alarms per hour and with a stability of about
35 percent. At DET 459, 70 per cent of the analyst picks were automatically
detected with 0.375 false alarms per hour. These false alarm figures are
on a per-beam basis so that they are comparable with those expected for
a single-sensor channel. The timing accuracy of the detector indicated

a late bias of 1.7 seconds, with a standard deviation of 2.2 seconds.

The potential exists for making major improvements in the "Z"
detector. A need exists to reduce false alarms caused by local seismic

6 signals, and to provide a restart mechanism for automatically "warming-
up" the detector after long power outages. Also, there is a need to
provide post-detection processing in order to improve the timing accuracy
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of signals, and possibly to cope with multiple arrivals of complex and

multipathed signal transmissions. A recent application of the "Z" de-

tector by Sax, et al. (197gb) indicates that the detector at KSRS pro-

vided precise magnitude estimates of complex events from a selected

USSR border region. Timing associated with event arrivals, in this

case, was complicated by the repeated arrival of other events, at

equal perceived magnitudes, for up to a minute following the first ar-

rival.

Additional work is needed to develop pre-filters to optimize the

detection of earthquakes and explosions. Since the signal-to-noise

ratio (SNR) for explosions and local events may be significantly different

from that for earthquakes, it may be desirable to provide more than one

optimized pre-filter for more complete extraction and identification of

various signal types.
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2.3 DEFLECTION DETiCTOR, SHENSA (1977)

The deflection detectot- works in the Fourier domain by taking
data vectors x and calculating the digital Fourier transform of

that data set. Using an FFT aljorithm, the power Pi(k) (for each

frequency k, Pi(k) is the real part of the FFT squared plus the

imaginary part of the FFT squared) at the kth frequency is found for

the ith epoch or time wondow. This moving power spectrum estimator is

used in three closely related detectors (see Figure 2.8):

1. The average (or stacked) power detector.

2. The maximum deflector detector.

3. The average (or stacked) deflection detector.

In each of these cases, Shensa (1977) used both Pi(k) and Pj(k)S=

log Pi(k) as the basic input quantity, but in all cases he found that

taking the logarithm decreased the probability of detection for a given
SNR.

2.3.1 The Average Power Detector

This detector is simply the "Z" detector operating in the frequency
domain. The average of Pi(k) over some signal band is found and a Z-

statistic calculated by normalizing to the mean and standard deviation

of the average power

SN2

k=N
Yi = N = Nz - N1  (2.25)

" where P and a are the mean and standard deviation of the average

power.

This is really an estimate of

Vari - u(var)
a(v~r) '(2.26)

{€i•Y•'K SSCI.•O F I OFT A-
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Figure 2.8. Block diagram of three deflection detectors showing how the
scalar statistic X, Y or Z is derived from the power spectrum
Pi(k) (After Shensa, 1977).
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or simply a

STA(var) - LTA(var) (2.27)
a(var)

which is just what Swindell and Snell (iO.77) calculated in the time
domain for the "Z" detector, after taking the log of the short term

variance estimator. An event is declared if this ratio exceeds some

fixed threshold.

2.3.2 The Maximum Deflector Detector

The power Pi(k) is converted into a "Z-statistic" on a fre-

quency-by-frequency basis by the usual transformation

P-(k) - p(k)
Z.i (k) =k) (2.28)

where p(k) and o(k) are the mean and standard deviation of the power

at the kth frequency calculated in the absence of a seismic signal. At

each epoch (value of i) the maximum Zi(k) is compared against a fixed

threshold value and an event declared if it exceeds this value.

2.3.3 The Average Deflection Detector

In this detector, instead of choosing the max [Zi(k)] the
1

average across some band is used

N2

x. = -(k) whereN N M (2.29)
i=N

With this implementation, the standardized variable Z. is computed

on a frequency band-by-frequency band basis. There is a certain simpli-

fication by noting that for the unsmoothed spectral estimators used here,

the standard theory of random data analysis yields the result that in

the absence of signal the sampling distribution of Pi(k) is given by

2 Pi(k)

Pi(k) X 2 2 (2.30)
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where X is the chi squared random variable with two degrees of freedom,

and Pi(k) is the true power spectral density. Since

E[X2] =2

Var X 2] =4

we see

SPi(k),

*1Pi(k)

This is the well known result that in the absence of smoothing, the

standard derivation of a power estimate equals the estimate itself.

Thus, equating the LTA with P for each frequency, we get

Zi(k) STA-A- 1 (2.31)=LTA(k)"

Although Pi(k) is itself X2  distributed, the statistic on Zi(k)

is not so simple because, of course, i and a themselves ire not

known exactly but must be estimated from the data.

This detector statistic is proportional to a weighted power spec-

tral density average between Nl and N2 . In contrast with the average

power detector, the average deflection detector weights each power

spectral density component inversely with the estimated standard devia-

tion of the noise power spectral density. The detection statistic used

produces the same incoherent noise gain as the average power detector,

but it is optimum o;ily for indpendent spectral noise fluctuations. The

average deflection detector differs significantly from the average

power detector in that it weights the signal spectrum more heavily at

those frequencies where it peaks relative to the noise spectrum. Note

the similarity between this and the %4l/FN(w) prefilter of the IBM

detector (Section 2.1), and the prewhitening operation of the Walsh

detector (Section 2.7). 
j
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Several weak-signal scenarios are given to illustrate factors which

influence the comparative performance of the above three detector concepts.

The first hypothesis we shall consider is that weak signals contain

energy which significantly exceeds the noise in at least one of the fre-

quency bands monitored by the detector. In this case, the maximum deflec-

tion detector will efficiently detect such a coherent sinusoidal signal.

The average deflection and average power detector would more than likely

miss this type of signal since averaging over other frequency cells

would reduce this signal peak by as much as 1/N (N frequency cells)

while the incoherent gain in reducing the noise standard deviation would

be no more than X~. Thus a detection loss as large as l/4Tf from theI
coherent gain of the maximum deflection would result from averaging all

frequencies over the full band of the detector.

A second hypothesis is that the weak signal spectrum does not exceed

the noise by a significant amount in any one of the frequency bands, but it

is near or slightly above the noise spectrum in the entire band covered

by the detector. In this case, the maximum deflection detector would miss

the signal; in addition, averaging over the band would produce a /Ff .1
incoherent gain by the average power detector. Averaging would produce

a somewhat smaller gain in the average deflection detector in that a

statistically variable weighted sum would degrade the detector perform-

ance. This expected incoherent gain of VTF would be produced by re-
ducing the standard deviation of noise fluctuations. The latter --ould
be accomplished by averaging the power spectral densities of the N

[ frequency components covering the signal band.

The third hypothesis is similar to the second in that the power

spectral density of the signal is near that of the noise. Consequently,

no detection is possible by the maximum deflection detector because no

large coherent gain can be observed at any frequency. However, in this

case, the noise spectrum is unstable, and it varies greatly with statis-
* tical independence from one frequency cell to another, and also from one

time slice to another. Similarly, the signal power fluctuations might
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also be unstable. In either case, the weighted average of the stacked

deflection detector would be required in order to achieve the most effi-

cient detection of weak signals.

The conditions for optimum performance of the three types of

spectral detectors are summarized as follows:

* The maximum deflection detector is optimized for a watk signal

if the signal significantly exceeds the noise at only one

or several frequencies within the signal band.

The average power detector is an optimum detector If the

weak-signal and noise spectra are stable and if the signal
spectrum is near or slightly exceeds the noise spectrum
uniformly over a broad range of frequencies.

e The average deflection detector is an optimum detector if

the weak-signal and noise spectra are highly unstable and

if the signal spectra is near or slightly exceeds the noise

spectrum over a broad range of frequencies.

Sht a evaluated the performance of these three detectors by adding

N,,o earthquake samples and two explosion samples to 3,000 seismic noise

samples. He examined the detection performance at various input SNRs

(SNRs between -6 and +9 dB). His goal was to obtain the complete operating

characteristics (Pd versus Pf) for all three types of detectors. The

most comprehensible results were obtained by comparing the detectors for

32-point FFTs and P1-versus-SNR for a false alarm rate constrained at

4.5 fa 1 - .rms . hour.

In the case of all four signals, the average deflection detector

operating characteristics are much worse than are either the average

power or the maxim eflection detector. This indicates that the seismic

signal and noise , ý.,tra are nearly stable and stationary. These results

also indicate that the average of spectral "Z" statistics is neither

optimum nor feasible for use as a detector statistic.
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In the case of the two earthquake signals, at all input SNRs, the
average power detector performed best. At 4.5 false alarms per hour and
for a detection1 ,robability of 0.5, the average power detector gained
0.2 mb of detection capability over the maximum deflection detector
in one case, and by 0.05 mb in the other case. Thus, the broadband "Z
detector appears to be a superior detector of earthquakes but not
necessarily of explosions. These operating results are relevant to
detecting weak signals (that is, signals which are only about 6 dB
above the ambient noise).

In the case of the two explosion signals and at all input signal-
to-noise ratios, the maximum deflection detector performed significantly
better than did the average power detector. For a false alarm rate of
4.5 false alarms per hour and a detection probability of 0.5, the de-
tection capability gain observed was 0.17 m b in one case, and 0.25 m b in
the other case. Shensa's results suggest that a dominant high-frequency
peak in a weak explosion signal is significantly more detectable than is
the result obtained when the power is averaged over a broad band of fre-
quencies between 0.9 and 3.6 Hz. These results pertain to weak explosion
signals which are nominally 4 dB above the ambient noise level.

As a step toward further optimization of spectral detectors,
Shensa suggests using prior information of signal and noise spectra to
perform fixed weighted estimates of the stacked power spectral density
for various observed signal types (e.g., earthquakes, explosions, local
events). The detector would then determine the maximum deflection from
such weighted power averages as optimum detectors of events with spectra
matched to previously observed signals. This suggestion is similar to
that of the matched spectral pre-filters suggested for improving the[ broadband "Z" detector.

The computer capabilities and storage requirements needed to imple-
ment Shensa' s maximum deflection detector are modest, and can probably be
accomplished with a minicomputer (distributed processing is probably
feasible for certain microcomputers). The programming required is only
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a slightly expanded version of the broadband "Z" detector. The bulk of

that program handles the suppression of redundant code detections.

Therefore, the inclusion of a set of fronc-end filters ot ,"ront-end FFTs

represents only a modest program expansion. Since the maximum deflec-

tion detector reduces the spectral data down to a single value of "Z"

at each point in time, the major part of the "Z" detector algorithm con-

cerned with suppression of redundant coda need only be performed once

for each time slice of data.

A
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2.4 ANALYTIC ENVELOPE DETECTOR, FARNBACH (1975); UNGER (1978)

The mathematical concept behind this detector is the representa-

tion of the signal as the real part of a complex function of time. In

the simplest case this amounts to a phasor representation of a sinusoidal

signal using a complex exponential instead of a sinusoid. In the case of

narrow band (but not purely sinusoidal) signals, the concept is general-

ized to include amplitudes and frequencies that vary "slowly" with time.

The advantage of this representation is the separation of amplitude and

phase information which in a real signal are blended in a way which

is hard to separate visually.

Any real function f(t) can be extended to form the complex analytical

signal (Figure 2.9)

C(t) f(t) - i FHi(t) (232)

where

1 f f(u)duI
Fi (t) = iJ ut(2.33)

is the Hilbert transform. (See, e.g., Bracewell, 1965.)

If we can assign a mean frequency w to the signal, as we might

expect for a narrow jand seismic signal, then we can write the complex

representation of x(t) as

Cx(t)ei' t  (2.34)

where Cx(t) is the generalization of the sinusoidal phasor, called

the complex envelope function.
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Real

Figure 2,9.~ The complex analytic signal. A modulated carrier f(t)s
its quadrature function F (t), and the associated com-
plex analytic signal are Iil shown as functions'of the
real variable time (after Bracewell, 1965).
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Cx(t) - E(t)ei(t) (2.35)

x

Then, our original signal x(t) is simply the real part or

x(t) - E(t) cos[wo t + ý(t)] (2.36)

where

E(t) is the instantaneous envelope amplitude

WO "is the mean frequency

*(t) is the instantaneous phase with respect to this
mean frequency.

The instantaneous frequency w(t) is given by

Id1t d (t) + W (2.37)

and
,1/2

E(t) (2.38)
HI

where XHi(t) is the Hilbert transform of x(t).

From a practical computational viewpoint, being able to calculate

the envelope function implies an associated time window or epoch. In-

deed, examination of Figure 2.10 shows us that, in fact, the envelope

8 function E(t) (see Eq. (2.35)) is simply a STA of Ix(t)I. Now,

we can examine a phasor plot of the complex envelope function for a

seismic waveform that is composed of a signal vector s-(t) and a noise

vector i"(t) combining to form a resultant phasor x(t) with modulus

Ix(t)l and phase '(t). If we assume that the signal phase is zero,

the phasor diagrams are shown in Figure 2.11, under both large signal

(left frame) and small signal (right frame) conditions.

I
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Figure 2,10, Envelope representation of the complex analytic signal

(after Bracewell, 1965),
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Figure 2.11. The instantaneous phasor for the complex analytic signal
(after Unger, 1978).
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In practice, of course, it is not possible to distinguish between

the instantaneous values of I*(t)l and I(t) . It is more useful to

examine the probability that I'(t)I > n0  some long term property of

the noise vector amplitude. Unger showed that if most of the time

nI-(t) I < no then
SP(Ixs(t)l > no) < P/%lXs(t)l > In t l. (2.39)

Thus,

P(I(1st) >n)= , s(t) = 0 (2.40a)

Is(t)l I1)

P(rs (t)I > no) < 1 - -I arccos 2n(t) < (t)

< In(t)l (2.40b)

e < P(I s (t0 1 > no) < 1 1 -If(t)( I 2 1 -(t) I

(2.40c)

where the e is the probability that the noise envelope in the presumed
signdl gate is greater than nO in the lagging, presumed noise gate.
This value depends on the statistical distribution of noise envelope

values. Thus, in the presence of signal, this probability is greater
than c, and increases with SNR, but is subject to an upper bound which
ranges from 0.5 to 1.0 as determined by the instantaneous SNR. The dif-

ference between the probability value and the upper bound increases with

the difference no - I•(t)l. This probability distribution function

is given in Figure 2.12, together with the phase bias probability
distribution curve given later.

Unger (1978) described tvwo detectors, one based nn the

amplitude of the envelope function and the other based on its

phase.
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[ Figure 2.12. Envelope and phase probability distribution curves (after
SUnger, 1978).
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i1. Amplitude Detection

Unger's envelope amplitude detection algorithin used simply nn iI= max

over a long term noise gate and approximated the probability P(Ix(t)I > no)

by counting the number of times that, in a presumed signal gate, the envelope

exceeds the maximum envelope in a lagging noise gate.

The procedure was as follows (Figure 2.13).

"First, over a specified warm-up period (e.g., 40 seconds), the

peak noise envelope, n is established. This peak envelope is cosine

tapered over subsequent waveform points, with a specified time constant
(e.g., with a 60-second time constant, the original peak value is halved

at 30 seconds and equals zero at 60 seconds). An envelope value exceeding

the tapered peak value establishes a new noise peak, unless a signal

detection is declared; in that case no noise peak update takes place until

the signal is declared to be terminated.

A signal detection is called whenever, in a forward-looking (leading)

time window of specified length (e.g., 4 seconds), the probability that

the envelope is greater than the tapered peak noise envelope,
P(t•(t)I > l•Imax)exceeds a specifiid threshold THI (e.g., TH1 = 0.3).

When this probability reaches its maximum the algorithm starts looking

for the first signal envelope peak. When the ratio of first signal

envelope peak and tapered noise envelope peak exceeds a second specified

threshold, the SNR threshold TH2 (e.g., TH2 = 2 to 3 dB), the signal
detection is confirmed and a frequency-dependent stepback is performed

to determine the signal onset time.

The stepback procedure (Figure 2.14) is based on the observation

that in most cases the first signal envelope peak (at t 4 ) occurs within

one signal period, and frequently at approximately 3/4 period, after the

signal onset (at to). In a high-SNR waveform the signal onset time is

most accurately found by detecting the first maximum or minimum of the

signal's instantaneous value (at t 3 ), and stepping back 1/4 period

(= 0.25/instantaneous frequency at t 3 ). For low-SNR waveforms the first

quarter period may be obscured by noise; in that case we step back 3/4

. -51
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Figure 2.14. Stepback procedure in analytic signal timing (after
Uruger, 1978).
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mean period (=0.75/mean frequency at t4) from the first signal envelope
peak at t. The mean frequency is the closed-form derivative of the
phase regression polynomial evaluated at time t4. The search for the
first quarter period is started at t2, i.e., at 0.8 mean period before
t4; the first quarter period is detected when its maximum or minimum
exceeds, by a third threshold, THO (e.g., TH3 = 1 dB), the immnediately
preceding noise in the one-eodtminrvl( 1  t,)).

If the second threshold (the SNR threshold) is not satisfied, the
detection is annulled and the noise peak value is updated with what at

first was believed to be the signal envelope peak. Thereafter, the noise
peak is updated as usual, until the next supposed signal detection, etc.

The signal end time is found as the moment of the first envelope
minimum occurring either after P(1r (t)I > In ) falls below itss max
threshold, or after the signal duration exceeds a specified maximum,
whichever is first. If this envelope minimum is greater than the tapered
noise peak the noise peak envelope is updated with this value, and noise
peak updating and signal detection resume as normal. This procedure
enables the detection and timing of later phases and other signals in
the coda."

Sax (1980) reported that, "in its present state, Unger's detector op-
erated on a single trace at a 70 percent detection probability with about
seven false alarms per hour. Its detection performance is certainly no
greater, and is probably less than, that of the other detectors discussed
here. Nonetheless, it has demonstrated superior performance in accurately
timing P-wave signals.

Unger (1978) tested his detector against an analyst's timing of
P-wave signals. Nearly half of the events examined were timed with no

apparent error. Ninety percent of the signals were timed within + 0.5
seconds of the analyst pick. Slowly emergent earthquake signals were

sometimes picked several seconds late. The standard deviation for

arrival times determined using Unger's detector is 0.2 seconds. By
comparison, the 1111 Detector times signals 1 .70 seconds late on an

average, with a standard of 2.20 seconds. Thus, Unger's detector demon-

strated superior capabilities for automatically timing seismic signals.
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As a result of its superior capability in timing seismic ,• waves,

Unger's detector was used in the 1979 VSC Event Identification Experiment
by ENSCO to automatically time and edit P-wave signals from long seismic
records. For example, a five minute record containing a possible P-iwave

signal is automatically processed by Unger's detector to transform it

into a 50-second, sir •; -.:tcred edit of the P wave.

The experience w 11 this application was that almost all of the

detected sil.-als were accurately timed, with only a negligible number of

false alarms. However, problems were encountered with missed signals.

These included both impulsive signals of very short duration and gradually

emergent signals. The missed-signal problem could be corrected by

employing variable-length time gates for the forward-looking signal window

and by using ordered noise statistics rather than the maximum noise
• estimates employed by Unger. In a few cases, Unger's detector inadvertently

shut itself off when it encountered large glitches or spikes in the noise

preceding a signal. Those cases could have been avoided by using robust

SI V median estimates of noise rather than the maximum noise estimates used by

SUnger.

2. Phase Detection

Unger also investigated the probability distribution for the phase

¢(t). For a noise phase angle uniformly distributed between ±rr, in the

absence of a signal P(Iý(t)j < •/2), equals 0.5. "The vector diagrams in

Figure 2.11 show that, when a signal is present, the phase angle is

statistically biased, i.e., the above probability is greater than 0.5.

For a given instantaneous SNR, this probability is:

vI(ic(t)I < /2)= 0.5 , s(t) 0 (2.41a)

S~~~~~-1 l(•(t) l((~ (~ 24b
P(lý(t)I < Ir/2) = 1 - l arccos ,(2.41b)

Ii (t)l
• P €())< 1T/2) =l, l t > i• t ((2.41c)

This is plotted in Figure 2.12.
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For a constant SNR, this phase bias probability can be approximated
by counting, within a waveform window of sufficient length, the number of

times that the phase fluctuation is within + w/2 radians, and dividing this
count by the number of window points. However, since in general the SNR

will vary inside the window, this approximated phase bias probability will
not relate to the SNR exactly as in Eqs. (2.44). Nevertheless, it
still is some measure of the average SNR in the window, and is a good
detection parameter, since it will have a value greater than 0.5 if a
si'gnal is present in the window. In this manner, phase detection is
established in principle. In the application to actual data, however,
there are some complications which will be discussed shortly.

The phase bias probability distribution function is compared to
the envelope detection probability distribution function in Figure 2.12.

We observe the important fact that the phase distribution curve reflects

a detection sensitivity which is twice that of the envelope, since the i
arccosine argument equals the instantaneous SNR in the case of phaseJ

detection, and only one half the instantaneous SNR in the case of envelope
detection. This suggests that, in principle, phase detection is at least i
6 dB better than envelope detection, especially when regarding the fact
that the envelope curve represents the upper bound of envelope detection
sensitivity. The detection sensitivity of the instantaneous phase has

been shown and used, for instance, in underwater sound propagation studies
(Steinberg and Birdsall (1966); Unger and Veenkant (1967a, 1967b)." In

the work of Unger (1978) this technique was applied to the detection and

timing of seismic signals.

Since, in general, the signal phase varies with time in a determinis-
¶ tic manner (e.g., in LP dispersed waveforms), the principle of phase detec-

tion can only be applied in those cases where a model for the expected
signal phase angle variations can be adequately specified. Clearly, such
a model can be specified for most LP waveforms, but it is not so obvious
for most SP waveforms. Also, car - ary to the assumption above, the noise
phase is not uniformly distributed, but may rather follow a somewhat
more deterministic trend. This is the case, for instance, when the
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dominant noise frequency differs from the reference frequency, fo, thus

causing a linear phase trend. The "continuous" phase then may traverse a
number of cycles within a given time gate. These facts necessitate

r I"tracking" the instantaneous phase function; the phase fluctuations about
j Ithe tracked or time-variant mean phase then may be studied for signal

detection. For noise, the fluctuations should be randomly distributed; in

the presence of signal they will be statistically biased. Thus, the

performance of the phase detector now rests with the efficiency of the
tracking process with respect to some presumed model governing the phase

variations of signals, and also with the validity of the model used to

estimate the signal phase angle."

Unfortunately, the rapid change of phase associated with a body

wave arrival means that few sample points are available for, say, regression

analysis of the phase changes, unless the data is very oversampled. This

inability to track phase led Unger to abandon phase detection, the theoreti-

cally more sensitive detector, and rely simply on envelope detection.

2.5 ALLEN DETECTOR, ALLEN (1978)

This detector is based upon a heL.'istic detection statistic

E(t) = [x(t)] 2 + C dx 2(2.45)dt

where x(t) is the input signal. The implementation of this proceeds

as follows:

1. Calculate

AY x . (2.46)

2. Calculate

Y= aiy + AYi (2.47)

S1 3. Calculate the "statistic"

E Y + C AY. (2.48)
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We can think of the detection statistic as being formed from

the weighted sum of the "power" of two filter outputs, one being a high-

pass (really a bandpass) and the other a differentiator, as shown in
Figure 2.15. The second filter clearly accentuates the energy near the
Nyquist frequency, making good arrival time estimates possible.

The STA and LTA of the detection statistic E are calculated in
the normal way with recursive filters:

STAi = (I -CS)STAi l + Cs Ei (2.49)

LTAi (I - CL)LTAi.l + CL Ei (2.50)

Finally, an event is declared if the STA/LTA ratio exceeds some thres-

hold value.

The rest of Allen's algorithm is concerned with verifying that the
declared event is not a false alarm and with timing the arrivals. The

program p-oceeds as follows:

1. When an event is declared the time is recorded along

with Y and the first difference of Y.

2. "The program now enters a pair of nested loops in which it
searches for a peak amplitude and the subsequent zero

crossing. When the zero crossing is detected, the program
breaks out of the loop, records the zero-crossing time

relative to event onset and the signed amplitude of the

preceding peak. The time and amplitude information is

stored ... for later use by analysis routines" (Figure 2.16).

3. At each zero crossi ,g of Y, the value of the STA is compared

with a constant and a record kept of the number of timts, S,

that the STA is less than this constant.

4. The "event will be declared over when some number of zero

crossings with the STA less than the constant" have occurred.
This termination number, L, will be small, typically 3, at

the start of an event to enable the program quickly to reject
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Figure 2.15. (a) Block diagram of the Allen detector and (b) the re-
sponse functions of the two filter elements.
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Figure 2.16. Schematic earthquake with data stored during events.
* (a) Seismic event with onset and end points. (b) Dots

represent zero-crossing times and previous peak ampli-
tudes. Amplitude bars indicate background noise preced-I. i"ing onset, and arrow gives first difference at onset.
(c) Data stored for use by analysis routines after event
terminates (after Allen, 1978).
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noise spikes or other very short-term interference. When

the algorithm is well into a larger event, however, L must
be considerably larger to ensure that an eart~iquake

observation is not terminated too early during a quiet

period between phase arrivals. The present version of the

program uses the relation

L = 3 + M/3 (2.51)

where M is the current number of observed peaks in

an event.

5. This decision of whether the event is over is simply a

comparison of S and L, with branches to continue the

program in the observation loop or te terminate observa-

tion of the event as required."

6. A test is made for the duration of the event to eliminate

such noise bursts as line spikes, etc. For small local

events, Allen used typically the criterion that the event

should be longer than 1.5 seconds and have recorded more

than 40 peaks.

The performance statistics currently available on Allen's detector

are based on local seismic network data sampled 200 times a second. The

results obtained are extrapolated below to those for a 20-Hz-sampled regional

* jor teleseismic network.

The operating characteristics demonstrated by local network opera-
tion show a 70 percent detection of analysts' pi~ks, with 36 false alarms

over 44 hours of operation. Allen's detector al~o grades the quality of

signal detections. None of the 36 false alarms as graded at the highest

level of reliable detections.

Allen'5 detector times local event signals to a standard deviation

of 0.05 seconds with 200-Hz local network data. This would scale to

0.5 seconds for our 20-Hz data, much better than the 2.2 second standard

deviation of Lhe "Z" Detector.
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In comparison with the "Z" Detector at the level of 70 percent

detection probaoility, the Allen Detector operated with 0.82 false alarms

per hour as a local event detector compared with 0.4 false alarms per hour

of DET 459 and with 0.8 false alarms per hour at KSRS. By design, the "Z"

Detector is expected to maintain a more stable level of false alarm control.

Allen's detector concept applied to the detection of regional and tele-

seismic signals sampled at 20 Hz is now being studied by ENSCO's DSC

Division.

It is interesting that Allen's detector operates on a completely

different principal than does the "Z" Detector. The power of Allen's

detector stems from the sophisticated post-detection analysis of possible

signals which is designed to eliminate mest false alarms. The frequency

is estimated by counting zero crossings. Also, the time duration of the

signal is estimated. A minimum event duration of 1.5 secoi~ds and an

acceptable range of frequencies are some post-detection analysis require-

ments for accepting detections as representing valid signals.

There appears to be room for a substantial performance gain 4n

detEcting P waves by using the Allen Detector, and especially by optimizing

the post-detection analysis for that purpose. The detector requires a

limited memory (about 1.0 K bytes) and a very modest computer capability.

The characteristic function and post-detection processing of the Allen

Detector is in a form most suitable for optimizing and training the

automatic detector to track the performance of experienced analysts.
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2.6 THE STEWART (•ETECTOR, STEWART (1977)

This detector uses an algorithm that was designed to mimic the

mental process tnat a trained analyst performed on a seismic trace. A

nonlinear high pass filter is applied to the signal to transform it in

such a manner that:

a. The o~cillatory nature of the signal is preserved;

b. Thr direction of the first motion is preserved;

c. It high passes the signal in the normal manner, thus re-

ducing the D.C. and drift components;

d. Slightly emergent onsets of seismic signals are enhanced.

The transformation process is illustrated in Figures 2.17 and 2.18.

The "algorithm computes the modified seismic signal MDXk from the in-

coming signal Xk, where k represents the current time epoch. The re-

sults of applying this transformation to a 1-Hz and a 3-Hz sinusoidal signal

are shown in Figure 2.18. From this figure the high-pass nature of the

transformation is apparent.

The first step in the transformation process (Figure 2.17) is to

compute the simple first difference of the incoming signal (DXk = Xk -

Xkl where k repref;ents the current time epoch). The sign of the

current first difference DXk is compared to the sign of the previous

first difference DXk.I. If the signs are the same, and if this sign has

persisted for less than eight consecutive times, then the value of the

modified signal MDXk is taken to be its current value increased by DXk.

Otherwise, the value of the modified signal is taken to be DXk." This

technique transforms the incoming signal in such a way that the four ob-

jectives listed above are accomplished. "This modified seismic wave

form is the basis for nearly all siy.,;al analysis by the on-line system.

The one exception to this is that the maximum signal amplitude is determined

from the incoming seismic signal Xk.'
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SODEFINITIONS

k II CURRENT TIME EPOCH

Xk ,SIGNAL AMPLITUDE

COMPUTE OXk SIMPLE FIRST DIFFERENCE
FIRST DIFFERENCE CURRENT uALUE OF
DXk'E-"Xk-Xk-I MODIFIED SIGNAL

RECALL PREVIOUSLY
COMPUTED AND SAVED
FIRST DIFFERENCE

MDXk.

AND ro the- iNcOmn signa X ThVE moiidsinli

HAVE SAME k kk EI

YES

SIGN PERSITE NO

8CONSECUTIVE

YES

J MDXý - MDXk.I 'DX. 1

Figue'e 2.17. Processing steps to compute the modified seismic signal
MDXk from the incoming signal Xk. The modified signal is

used extensively in the detection logic of the on-line
system (after Stewart, 1977).
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Figure 2.18. Effect of the filtering operation (summarized in Figure
2.17) on a 1 Hz and 3 Hz sinusoidal signal. The upper
signal is the unfiltered analog output of a function
generator, fed simultaneously to one channel of the on-
line system and to a chart recorder. The lower signal
is the filtered function MDXk computed in real-time by
the on-line system and routed through a digital-to-
analog converter to the chart recorder. Digitizing rate
is 50 samples/second. Peak amplitude of the 3 Hz filtered
signal is approximately twice that of the 1 Hz signal
(after Stewart, 1977).
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The long-term averages of three quantities are computed;

S1. The mean of the signal itself

LTA1i = (1 - Ci) LTA 1 i1 + Ci Xi

2. An estimate of the standard deviation of the signal is made

by calculating the LTA of the absolute value of the varia-

tions of the signal about its mean

LTA2i - (I - C2) LTA2i.1 + C2 IXi - LTAiil

3. A similar estimate of the standard deviation of the modified
signal is the LTA of the absolute value of the MDXi

LTA3i ( - C3) LTA3I + C3 IMDXi

where C1, C2 and C3 are the filter constants.

These quantities are intended to characterize the signal under the

no-event hypothesis and thus updating their values is suspended if a

tentative event is detected. The detection algorithm is a two-stage pro-

cess with the first stage detection test being simply a test of whether

MDXi/LTA3i is larger than some constant C4.

When a tentative detection is made, the algorithm proceeds to the

post-detection stage designed to reduce the FAR. Stewart (1977) divides

F this process into two modes, the P-phase processing and the coda pro- :
* cessing.

The P-phase processing continues for 0.5 second after the tentative

detection is declared. (The data he considered were sampled at 50 sps.)

During this interval, the following four criteria must be met to proceed
t or else the tentative detection is cancelled:

A > C4 Ni times;

I). LTAL
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2. The time duration for which

MDX.i
umi < C4 must not exceed 0.28

seconds consecutively; j

3. Imax X1l > C5

Imax X.I

K4.>8 LTI

If these four tests are passed, the algorithm then proceeds

with the coda processing. This process continues for a time interval

determined by testing

MDX CS• >>C6,

if this test fails for a continuous 2 seconds, the coda processing is

terminated. The following three tests must be passed during this phase

"of the algorithm.

* 1. Coda length must be > 4 seconds;

oIMDX. MDXi
2. >C6 and 6 < - C6

* is alternating sequence at least six times;

3. The number of oscillations of MDXi must exceed 0.5 Hz/time

duration of coda.

This algorithm was implemented by the USGS using data from their

central California and Oroville networks. Stewart (1977) reports on test

results from this network obtained during a one month period which in-

cluded a large aftershock sequence near Oroville.

Table 2.1 (after Stewart, 1977) summarizes the results of both

detection and on line location for the Oroville network while Table 2.2

(also from Stewart, 1977) summarizes the results for one month of opera-

tion on the central California network.
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TABLE 2.1

DETECTION AND LOCATION CAPABILITY OF REAL-TIME SYSTEM FOR THE
OROVILLE SEISMIC NETWORK DURING OCTOBER 1975

No. of Events Percentage Comment

107 90.7 Detected and located.

8 6.8 Detected but not located, because
data were too noisy or too sparse.

1 0.8 Not detected.

2 1.7 Not detected, preceded within 60
1 seconds by another eient

S-•118 i00.0
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TABLE 2.2

DETECTION CAPABILITY OF REAL TIME SYSTEM FOR THE CENTRAL
CALIFORNIA SEISMIC NETWORK DURING OCTOBER 1975

No. of Events Percentage

225 86.5 Detected.

25 9.6 Not detected, events north of 38*30'.

5 1.9 Not detected.

3 1.2 Not detected, computer maintenance in
progress.

2 0.8 Not detected, preceded within 60 seconds
-- ~by.another event.

260 100.0
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A portable field recorder, Teledyne Geotech's Model MCR-300

Microcorder (Veith, 1978), which uses this algorithm, has been developed

and tested. The tests were run on two field units operating at the

Nevada Test Site where the noise sources, both natural and cultural,

varied both in character and time. Data was sampled at rates varying from

20 sps to 200 sps for several days. Comparison between the results of
this algorithm and the "standard STA/LTA" algorithm was made. The main

results of these tests were:

1. "Once triggered, the STA/LTA detector often shut down during

a relatively low signal period only to trigger again after
a second or two. The algorithm detector did not shut down
until the end of the signal.

2. An "emersio" signal would not trigger the algorithm unless it

contained a higher amplitude energy burst. The STA/LTA de-

tector often triggered from "emersio" signals. (Emersio is

used here in the sense that both the long and the short term

averages are increasing slowly in the STA/LTA ratio is near

the specified SN value.)"

Veith (1978) finally concludes that, "tests on limited data show

the algorithm can ignore noise while detecting earthquake energy. It

can make the transition between changes in noise level with every little

difficulty and record seismic signals within virtually any background

without changing the settings of the algorithm parameters. The algorithm

will record complex signals without the termination problems typical

of the STA/LTA detector.

While the tests gave very good results in detecting seismic events,

they were not perfect. It may be possible to develop additional simple

tests during the field test period which would provide a more powerful
discriminant. The principle difficulty lies in obtaining tests which

may be passed by microearthquake signals, teleseisms or surface waves in

accordance with the pass band selected."
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2.7 WALSH DETECTOR, GOFORTH, T. AND E. HERRIN (1980)

"This detector is based on the representation of the digital seismic

signal in terms of Walsh functions. These form an ordered set of rec-

j tangular waveforms which are either +1 or -1. They are ordered ac-

cording to the number of zero crossings per interval. Like the exponential

functions of the Fourier transform, they form an orthonormal set over

some interval. Thus, the sampled seismic signal xi can be represented

in terms of its Walsh transform coefficients by,

!"N-1
kxj W Wal(k,j) (2.52)

N-1
W xj Wal (k,j (2.53)

i j=O

and k is termed the sequency. Figure 2.19 illustrates the Walsh functions

Wal(N,i) for N 0 0, ... , 8. This transformation may be compared to the

discrete Fourier transform pair of:

N-i
1 kSxi =TLFk eik (2.54)

r k=O

where

N-I

Fk x je-iwjk (2.55)
j=O

and

2,T
N (2.56)
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Obviously, since Walsh transforms are generated using simple

rectangular + or - unity functions rather than sines and cosines,

they may be calculated much more efficiently (quicker) in a computer.

Clearly, to generate the Walsh transform of the discrete x all that

must be done are logical compares and adds. Perfnoming functions such as

prewhitening and filtering will similarly be much more efficient than
their time domain or Fourier transform counterparts. Indeed, the purpose

of this detector is speed or computational efficiency in the implementa-

tion of concepts used in other detectors.

A block diagram of the detection algorithms is shown in Figure

2.20. The digital data is analyzed in 64 sample windows (3.2 seconds for

20 sps data) with a 32 sample overlap. The analysis proceeds as follows:

1. The Walsh transfcrm of the 64 data samples is

calculated

63
W x Wal(k,j) k = 0, 63 (2.57)
Wk(x) 64 h.Aj

J=O

2. The Walsh coefficients are multiplied by prewhitening weights

NR calculated beforehand (see below).

3. Weights Bk of 0 or I are applied to isolate the fixed

signal band.

4. The absolute values of the weighted Walsh coefficients

0 are summed to give the final detection "statistic"

k2

y J lWk Nk" Bk1 Bk = k I k < k2  (2.58)

* k=kI
= 0 for other k (2.58)

The detection statistic Y is thus equivalpnt to the STA here calculated

over at 3.2 second gate for 20 sps data.
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f VJ

READ 64 SAMPLES
OF DIGITAL DATA,

Xj

WALSH TRANSFORM

63
Wk = ' XjWAL(k,j)

j-O

APPLY WIENER WEIGHTS TO
WALSH COEFFICIENTS, W ,, PRINT DETECTION

TO WHITEN NOISE

M GREATER

RiANK Y BY AMPLITUDE I
APPLY WEIGHTS OF ZERO AMONG PREVIOUS 512 COMPARE Y VERSUS

OR ONE TO W TO ISOLATE VALUES OF M, DISCARD- THRESHOLD
SEQUENCY BAND OF SIGNAL ING OLDEST

____ ,,7___ LESS
N-1

Y : IWk'

PERCENTILE OF DSTRIBU- THRESHOLD =MEDIAN+ k
TIO OFPREVIOUS 512 •l (75% -MEDIAN)

VALUES OF Y

Figure 2.20. Walsh detector flow diagram (after Goforth and Herrin, 1980).
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The prewhitening weights Nk are cu,-rently calculated in a non-

adaptive manner as follows:

1. A 34 minute sample of noise is selected.

2. The Walsh transform of 640 consecutive 64 sample windows

is calculated.

3. The mean of the absolute values of each of the 64 Walsh

coefficients is computed.

4. Weights of the form 2 • n, where n is an integer,

are selected to whiten the means in each subsequency

band.

The detection threshold against which the statistic Y is tested
is calculated from the median value Y50, and the 75 percentile value

SY75 of the previous 512 values of the STA (14 minutes) by the weighted

combination.

Threshold = (1- k' Y5 0 + k Y75 (2.59)

The coefficient, k, is typically five. Note that this is not the same

as the action of a recursive filter on Y. If Y is Gaussian distributed

* with mean p and vdriance a2 then

Y5 0 =* y

* Y7 5 = 1.5ay .

Thus, in this case,

Threshold =y + 5 (1.15 ay - py) . (2.60)

If the current value of the sum of the absolute values of the Walsh

coefficients exceeds the threshold for two consecutive time windows,

an event is declared. If it does not exceed the threshold, the sum of

the absolute values, Y, is ranked among the previous 512 values, the

oldest value being discarded. In this way an adaptive detection threshold
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is maintained, the adaptation window being approximately 14 minutes.

If a signal is called, the threshold is not updated.

Three separate tests of the Walsh detector have been reported by

Goforth and Herrin (1980). Two consisted of tests conducted on simulated

data constructed of no.,e plus scaled 8 second long segments of a

Novaya Zemlya explosion added at specific times to the noise samples.

The noise samples were taken from:

1. The SMU KS36000 seisinometer at Dallas with the signals

added at a SNR of 1.0 and 0.75.

The ANMO SRO with the signals 4dded to scale a 4 . 5 mband 4.2 m b event.

The results of these tests were:

la. 80 detections (100%) 0 false alarmb,

b. 40 detections (100%) 1 false alarmI

2a. 39 detactions (97.5%) 0 false alarms
b. 36 dete-tions (90%) 1 false alarm
Finally, thr detection algorithm was run on the center element

of one of the NORSAR subarrays for a five hour period of data. The re-

stilts were a seven out of eight detection success (missing a 3.6 mb at

6,222 km epicentril distance) with a FAR of 0.6/hour. In another over-

lapping seven hour test, the algorithm succeeded in detecting nine out

of ten events (including a local teleseism that the NORSAR beams missed)

with a FAR of 0.86.
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2.8 MARS DETECTOR, MASSO, et al. (1979)

The MARS (Multiple Arrival Recognition System) detector uses

quasi-harmonic decomposition to analyze a broadband signal by passing

it through many narrow band filters. One thus obtains a time-frequency

breakdown of the non-stationary signal power. An "event" consists of
a statistically significant fluctuation from the random background
pattern of the instantaneous spectrum. There are certain strong

affinities between the MARS detector and the deflection detector de-

scribed in Section 2.3, particularly the "average deflection" (3) ver-
s-on. Both use frequency domain methods, and both search for short

term increases in power over an adaptive frequency band. Unlike the

deflection detector, however, the MARS detector does not calculate

directly a statistic, but rather contains a highly nonlinear and adap-

tive pattern recognition algorithm which seeks undispersed alignments of

peaks in the narrow band envelope functions. The function of the STA, the

fundamental time 1D' is roughly dependent on the Q of the filters, for

the narrower the frequency resolution, the larger the time duration of

the impulse response. There is also inherent in the method an LTA, for

envelope maxima only have meaning to the extent they deviate from past

behavior. But even though these two concepts carry through in the MARS

detector, they do not appear in a mathematically tractible form, since
the final decision is based principally on a band width and dispersion

criterion.

The concept of a detector based upon multiple baýJ pass filters
goes back at least to Moltshan, et al. (1964), who stated:

"The signal from the seismogram is passed through a group
of linear filters. All filters are divided into several,
in our case, two, sub-groups. In each sub-group the filters
have the same pass band, but difference resonance frequencies;
their pass bands are not overlapping and cover the whole
range of frequencies. Then the output of each filter is com-
pared with some threshold which is chosen according to the
level of noise in this filter. If in at least one of the
filters the threshold: is surpassed, then the presence of
a useful signal -- th.e alarm -- is announced. The record
may beg½n slightly before the alarm; which is why a delay
line is desirable."
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The potential advantages in this technique lie in the area of

adaptibility and in signal characterization. This latter aspect, indeed,
was powerfully utilized in the work of Masso, et al. (1979) which in-

volved both detection and discrimination of seismic signals. They

describe the detection part of the MARS processor as follows:

"The central feature of the detector module is the use of a set of
narrow-band frequency filters to break up or decompose a time series con-

sisting of signal plus noise into a set of Auasi-harmonic modulated

"signdls." This set of filtered signals, one for each filter of center
frequency fc' can then be used to determine the energy arrival time

(or group arrival time, t ) and amplitude of the original broad-band

signal by analysis of the time modulation of the filter outputs.

Further, both the instantaneous phase and frequency of the individual

filter outputs, that is the apparent phase and frequency of the quasi-

harmonic filter outputs as a function of time, can be determined quite
simply. Thus, the decomposition of the original signal wavetrain,

possibly composed of many individual signal pulses, into quasi-harmonic

signals provides the means of determining arrival time, atriplitude and
phase, all as functions of frequency. This then is the basic signal

information that can be used to detect a given type of signal in terms

of its dispersion characteristics and to obtain its spectrum as well
as its time and amplitude relationship with respect to other signals

present in a complex wavetrain.

The basic approach is to identify patterns from the signal and
noise information as it is expressed in the tg - t plane (the group

arrival time, tg, versus frequency plane). The pattern to be searched

for in the t - f plane will correspond, in the case of a body wave,
to a (nearly) undispersed signal, with spectral amplitude significantly

above background in a frequency range corresponding to some fraction of

the total band. This frequency band will be in a range where the signal

power is expected to be highest relative to noise. (This means we will

make use of the matched filtering concept, in the sense that we know

roughly what spectral content we expect for the signal. This concept

is also used when we look for only undispersed signals or signals of known
dispersion characteristic.) Thus, in the t - f plane one would search

8
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for a straight, horizontal line-up of envelope maxima in a selected fre-

quency band, using the largest maxima as the beginning point in such a

pattern recognition procedure. This, therefore, implicitly, uses a

threshold detection criteria in a detection band, since by starting with

the largest envelope maxima we are essentially requiring that the signal

power be above the background level in at least a part of the detection

band.

"Basically, then, by looking in this t - f - A - g space, we
will apply criteria based on properties of the expected signal, namely

its expected dispersion and spectral content, in order to recognize a

signal pattern and to thereby detect the signal. An example of how this

is accomplished is shown in Figure 2.21. In this figure we plot the

times (tg) of the envelope maxima from narrow band filter outputs, with

of the order of N = 20 filters used so that the signal frequency content

is sampled at about 20 points, fn' With each envelope maxima point in

the plane, there is also an associated (spectral) amplitude A (fn),
g n

instantaneous phase g(fn and an instantaneous frequency (dP/dt)tg.

Thus, the t - f plot corresponds to a multidimensional display of
spectral content and energy arrival time for a given segment of a time
series. Normally either 1,024 or 2,048 points are used for time seg-

ments, and for short period seismic data this ccrresponds to a 50 to 100

second segment which is processed in each pass. For on-line continuous

processing, overlapping time segments will be used.

A sub-band within the entire frequency range covered by the set

of filters is shown in Figure 2.21 and is used as a "detection band,"

that is, a frequency band within which a signal pattern (straight hori-

zontal line locus of envelope maxima in the case of an undispersed

body wave) is sought. This band, from f* to f*, is selected externally,

based on the expected signal frequency character. The largest envelope

maxima wit~iin this band are flagged (denoted by • in the figure) and

used to compute a mean "signal" arrival time (i.e., group time) T for

the maximum power arriving in this frequency range. An acceptance win-
dow in time, for which maxima can actually be associated with an undis-

+
persed signal, can be constructed using the relation: t ± t- cLAt;

g Gwhere At is the time uncertainty associated with the envelope maximum
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Figure 2.21. Typical t1-f plane representation of a time series seg-

ment (0 t• 36 sec) when the signal-to-noise ratio is low.
Only the largest envelope maxima (X) and second largest

K } maxima (0) are shown. Other, numerous, smaller envelope
maxima are normally scattered throughout the tg-f plane,
but for t.iis illustration they have been omitted. Each

-' filter "output line" normally displays about ten such
peaks. '
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time t for a filter output at centE' frequency f and half power band

width Af. In particular, AtAf > 1/411 is the theoretical uncertainty

relation and since Af/f - Q-1, then At > 1/411 (Q/f). Further, we use

ta to denote the standard deviation in the time data used to compute tg

and make use of it to define the acceptance time window about t as
well. Hence, taking an appropriately chosen constant a near unity,

then two time window boundary lines can be defined to give the time win-S +
dow; that is: t + ta + (a/411)(Q/f) and Tg - ta - (c/411)(Q/f). All

of the largest maxima within such a window are then to be taken as ac-

ceptable undispersed "signal" group arrivals. Those outside would be

rejected and the second largest maxima could then be tried, and so on.

If the number of peaks accepted in the window is lower than some

specified lower limit, then the tentative "signal" detection would

be rejected and reclassified as noise."

As currently implemented for the SDAC detection experiment, the

algorithm can be described by the flow diagram given in Figure 2.22. A

difference between MARS and most other detectors appears right at the

beginning, in that quite long (say 100 seconds) signal windows are

typically used.

Fourier transform methods are used to derive 20 or so narrow band

envelope functions. A heterodyne operation applied to the windowed

frequency function means that the algorithm effectively calculates one
forward and two (rather than 20) inverse transforms.

With the 100 second sample of envelope function available, the

MARS detector quickly zeros in one the most likely candidate "event"

by searching for the largest envelope maximum in each band, and averag-

ing their occurrence times. A generous search window is constructed

about this averaged time, within which undispersed alignments of envelope

maxima are sought. It is at this stage that a threshold amplitude

value, based upon the LTA for each frequency band, is used to sort out

only the "large" peaks. After this stage, the actual value of an envelope

maximum is never used. If a significant number of frequency bands show

well aligned envelope peaks (or energy arrivals), an event is called

and its arrival time within the window noted. Otherwise, the LTA, or

81 SYSTEMS. 5'$IENCE AND SOFTWARE



READ AND EDIT_DETECTION]
INPUT TIME SERIES

R NOISE TS
ESTIMATEDA

THWERE THERE ANY
N SUCH MINIMUM DISPERSED

PATTERNS WHICH PASS
THE AMPLITUDE TEST?

USE FOJRIER TRANSFORMMETHODS TO PRODUCE NARROW•

BAND GAUSSIAN FILTER
"IENVELOPE FUNCTIONS APPLY A FINAL AMPLITUDE

THRESHOLD CRITERION TO
ANY SUCH PATTERN OFFOUND

PICK SIGNIFICANT PEAKSSANEVOPPAS
SUCCESSIVELYE MORETDPWITHIN THIS WINDOW FOR

THE GROUPSPESD ARRIVALTM RMSGALS

AND STORE AS tg VERSUS fNOISEWIED AVRAGS"S A"W REATET O(MINIMUM TIME SCATTERPLANEDATAACROSS FREQUENCIES)

CALCULATE THREE FORM A FREQUENCY
SUCCESSIVELY MORE DEPENDENT WINDOW IN TIME

REFINED ESTIMATES OF ABOUT THE GROUP ARRIVAL
# THE GROUP ARRIVAL TIME FROM SIGNAL/

TIME OF A CANDIDATE NOISE WEIGHTED AVERAGES
"SIGNAL" WITH GREATEST '" OF PEAK TIME BEFORE AND

POWER FROM SIGNAL/NOISE THOSE AFTER PLUS THE
WEIGHTED AVERAGES TIME UNCERTAINTY
OF ENVELOPE PEAK ASSOCIATED WITH EACH

TIMES NARROW BAND FILTER

Figure 2.?2. MARS detector flow diagram.
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noise threshold, in each band is updated and the next block of data pro-

cessed.

Although a key part of the MARS analysis in the SDAC discrimina-

tion experiment was reliable performance of the detector algorithm, the

dependence of FAR on program variables has only been studied in the past

six months. These noise studies, as well as processing of the SDAC

detection test tape have yielded quantitative values for the receiver

operating characteristic.

In the recent report by Farrell et al. (1980), it was concluded that

"The MARS seismic event detector offers a significant improvement over the

current VSC optimally-filtered STA/LTA detector. On nearly 45 hours of

synthetic data, MARS detected 13 percent more events than the STA/LTA detec-

tor, demonstrating its capability of extracting low-level signals in a poor

SNR environment. The additional events detected by MARS are nearly all

small amplitude...events. The advantage of the MARS algorithm at low

signal levels should not be surprising since MARS is not simply a power-

law detector but also uses the signal dispersion and bandwidth as discrim-

inating characteristics.

The improvement in detections was achieved with no attendant increase

in the falsp 0larm rate. In fact, with the NORSAR data, the MARS FAR was

only two-thirds that of the STA/LTA detector. The MARS FAR with the Pine-

dale data is equal to that of the STA/LTA detector. It is likely that the

MARS FAR can be lowered with the implementation of more discriminating

detection tests, but the present level of MARS detections is close to the

theoretical limit predicted for an ideal matched filter and is unlikely to

be greatly increased by any means.

The ten percent advantage in probability of detection shown by the

MARS detector for this particular class of events is equivalent to an im-

provement of about 0.1 in body wave magnitude. This is, the MARS detector

should have nearly the same probability of detection and same false alarm

rate as the benchman VSC detector, but for signals which are an average of

0.1 magnitude smaller."
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III. CONCLUSIONS AND RECOMMENDATIONS

1. All detectors reviewed in this report are based on a compari-

son between some form of variance estimate of the signal cal-

culated over a time period approximately equal to the duration

of an expected seismic "event," and the normal (or long tern)

variance.

Possible exceptions to this general form are the phase de-

tector described by Unger (1978) and the similar part of

MARS. The former did not work because the short period

phase fluctuations were so rapid that they could not reliably

be predicted; the 'tatter has not been implem~ented.

2. Ad hoc detection algorithms such as Allen's and Stewart's

(1977) offer a hope of some improvement in the ROC of

the detection process. These methods, after having made

the basic detection statistic test and having made a tenta-
tive identification, are followed by a further process that

is designed to: I

a. reduce the false alarm rate,

b. improve the timing capability, andI,,c. speed the recovery of the detection algorithm after an
event is encountered.

How m~uch these algorithmis can be expected to offer signifi-I.,cant improvements in the ROC depend upon where on these curves
they are operating. If the SNR is such that a high probability

of detection is achieved with a tolerable FAR, then little im-
provement can be expected. If, however, the SNR is poor so that

the probability of detection is low for a given FAR, then sig-

nificant improvement may be achieved by such two-stage

algorithms.

3. Testing of the detectors described in this report was not car-
ried out in a uniform manner on the same or even similar data

* ~sets. Thus, no definitive statement about their relative]
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performance may be made. However, it appears that no one

detector is obviously superior to all others. Some have

been optimized for teleseismic detection using a moderately

large computing facility. Some have been designed for opera-

tion in microprocessor controlled field recording units,

typically used in the near field or at least at regional
* distances. These applications stress ease of implementation

in microprocessors. Some algorithms stress detection timing

accuracy as this may be another object of the algorithm.

4. Little theoretical advance has been achieved since Frieberger's

1963 work in which he "solv.ed" the problem of detection of a
Gaussian signal in Gaussian noise. The influence of this work
has rightly guided the design and implementation of many of

the detectors used today. However, it must not be thought

that the "real problem" has been solved. The "real problem"
is the detection of certain non-Gaussian signals in the pre-

sence of non-Gaussian noise. Frieberger discovered the optimum

detector for an approximate model of Lhe actual situation,

but other algorithms may work significantly better on "real"

data. F,'rther, considerations such as timing ability, re-

covery of the algorithm after an event, and immunity to highly
non-Gaussian noise such as line spikes and data drop outs

may dictate very different approaches.

4
# RECOMMENDATIONS

* Uniform testing of all viable detectors should be conducted

with

a. a realistic synthetic data set,

b. all detectors coded for and running on the same or

similar machines; and

c. ROC curves produced for each detector.

a Theoretical and experimental research in phase sensitive de-

tectors should be supported as this is an area where it may 2
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be possible to exploit signal information not used in

energy or power detectors.

* Research should be encouraged to test if matched filters

for specific types of signals (station/source pairs) im-

*proves detector performance.

Frhrdevelopment of hybrid detection algorithms, that

combine high probability of detection with a high FAR and

then are followed by a post processing to reduce the FAR

should be undertaken.

* New algorithms, designed specifically for use with the

new generation of three componenet broad band seismographs,

should be developed anid tested,.

* In view of data rates from these new data sources, dedicated

microprocessors to run the detection algorithms on a one

processor per channel (or seismic station) basis should be
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V. ABSTRACTS OF PRINCIPAL PAPERS

Allen, R. V. (1978), "Automatic Earthquake Recognit-io,, dnd Timing from
Single Traces," BSSA, 68, pp. 1521-1532.

Abstract: A computer program has been developed for the automatic

detection and timing of earthquakes on a single seismic

trace. The program operates on line and is sufficiently

simple that it is expected to work in inexpensive low-

power microprocessors in field applications. In tests with

analog tapes of earthquakes, the program correctly identi-

fied and timed to within 0.05 sec about 70 percent of the

events which would normally be timed in operation of a

network. The program evaluates the accuracy of its picks,

and its estimates appear to be quite reliable. The

algorithm is working at present in a 16-bit minicomputer

and appears to be compatible with presently available

microprocessors.

Farnbach, J. S. (1975), "The Complax Envelope in Seismic Signal Analysis," i.
BSSA, 65, pp. 951-962.

Abstract: Some practical implications of the complex envelope repre-

sentation of seismic signals are presented. Beginning 1

with a look at an artificially constructed signal and

proceeding to seismic records, it is seen that the complex

envelope is more amenable to visual interpretation than

the real signal itself. This is attributed to the natural

separation of amplitude information from angle informa-

tion afforded by the complex representation, and examples

of arrival time measurement and P-coda correlation suggest

that this leads to concrete seismological benefits. On

this basis, it is suggested that the complex envelope may

be a useful tool in seismic signal analysis.
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Frieberger, W. F. (1963), "An Approximate Method in Signal Detection,"
Quarterly Appl. Math., 20, pp. 373-378.

Abstract: A theorem from the theory of Toeplitz forms is applied to the

problem of estimating the best test statistic for the detec-

tion of Gaussian signals in Gaussian noise.

Goforth, T. and E. Herrin (1980), "Semiannual Technical Report," Air
Force Office of Scientific Research, Contract No. F49620-76-C-0030,
Dallas Geophysical Laboratory, Southern Methodist University.

Abstract: An automatic seismic signal detection algorithm based on the

Walsh transform has been developed. Since the amplitude of

a Walsh function is either +1 or -1, the Walsh transform can

be accomplished in a computer with a series of shifts and

fixed point additions. The savings in computation time makes

it possible to compute the Walsh transform and to perform

band-pass, pre-whitening and adaptive filtering with a micro-

computer in real time for use in signal detection.

The algorithm has been programed in FORTRAN on a Raytheon

Data Systems 500 mini-computer. Tests utilizing seismic

data recorded in Dallas, Albuquerque, and Norway indicate

that the algorithm has a detection capability comparable to

a human analyst. The Walsh detection algorithm runs in

approximately 1/10 real time on the RDS-500 mini-computer.

Programming of the detection system in machine language

on a North Star Horizon microprocessor-based computer is

almost complete. Run time on the Horizon is estimated to

be 1/3 real time.
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Shensa, M. J. (1977), "The Deflection Detector, Its Theory and Evalua-
tion on Short-Period Seismic Data," Report TR-77-03, Texas Instruments,
Alexandria, VA.

Abstract: This study investigates the application of~ a deflection detector
F to short-period seismic data. In general, for power detectors,

no single filter will be optimal for a large variety of signals

in a dynamic noise environment. The deflection detector
represents an attempt to adapt to such a situation by utilizing
individual FFT frequency cells as a bank of filters which can
accomodate a broad variety of signals. The performance of
the deflection detector is analyzed and compared to that ofI
the power detector for several seismic signals. It is con-

cluded that the deflection detector shows a distinct advantage
when the variety of signal spectra to be detected is sufficiently
large.

Stewart, S. W. (1977), "Real-Time Detection and Location of Local Seismic
Events in Central California," BSSA, 67, pp. 433-452.j

Abstract: A computer-basedi system dedicated full time to automatic de-
tection and location of local seismic events in central

)I

California has been developed. The system monitors 108
t short-period vertical-component stations from the U.S.

Geological Survey central California and Oroville seismic
networks. Locations and matnitudes, when determined, are
printedi out along with first arrival times, within 2 to 5
minutes after an event occurs. Wave onsets must be clear
and impulsive for best results. For this reason, regional
events and teleseisms are usually rejected.

The best results have been obtained for the relatively dense,
16-station Oroville network. For the month of October 1975,
107 (91 percent) of the 118 events timed by hand were also
timed and located by the real-time system. An additional
eight events (7 percent) were detected in real-time but were
not successfully located. Of tie 107 events for which both
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Stewart, S. W. (Continued)

on-line and hand-timed locations are available, 92 percent

of the on-line locations are within 2 km of the epicenters

determined by hand-timing.

During October 1975 the real-time system monitored 91 of the

150 stations of the central California network. Of the 260

events located by hand-timing, 225 (86 percent) were detected
by the real-time system. Magnitudes of detected events range

from 0.8 to 2.9. Approximately 95 percent of the events of
magnitude 1* and greater detected and located by hand-timing

methods were also detected by the real-time system. Dif-

ferences between hypocentral locations based on hand-timed
and computer-timed arrivals may vary from 0.1 to 5 minutes

of latitude or longitude.

Swindell, W. H. and N. S. Snell (1977), "Station Processor Automatic
Signal Detection System. Phase 1: Final Report, Station Processor Soft-ware Development," Texas Instruments Report No. ALEX(Oll-FR-77-OI,AFTAC Contract No. F08606-76-C-0O25, Texas Instruments, Incorporated,
wal vlas, Texas.

Abstract: This report sumnarizes the results of a program to develop

an automatic short-period signal detector for the Station
Processor system. Of the two types of detectors considered,

the Fisher detector and the conventional power detector, the

power detector was found to be superior both in terms of

signal response and false alarm statistics. A new means of

setting the alarm threshold was developed. This technique

produces a constant false alarm rate detector and represents
a significant improvement over presently used schemes. A

detection analyzer which reduces redundant detections from

signal coda also was developed. A structure for the proto-

type detection system was designed and recomnended.
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Unger, R. T. (1978), "Automatic Detection, Timing and Preliminary Dis-
crimination of Seismic Signals with the Instantaneous Amplitude, Phase
and Frequency," Texas Instrwnents Report No. ALEX(O1)-TR-77-04, AFTAC
Contract No. F08606-77-C-0004, Texas Instruments, Incorporated, Dallas,
Texas.

Abstract: The feasibility is evaluated of applying instantaneous ampli-

tude, phase and frequency measurements to automatically detect,

time and identify seismic events. Detection based on phase

measurements is shown to be in principle 6 dB more sensitive

than detection based on amplitude measurements. A phase

detection and timing algorithm, using a priri known disper-

sion characteristics, is demonstrated to time the onset of

simulated teleseismic long-period surface waves within 30

seconds accuracy in 70% of the tested cases, for waveforms

down to 0 dB signal-to-noise ratio. By phase measurement,

rather than by amplitude measurement, this algorithm also

provides a measure of the surface wave signal-to-noise ratio.

These results can be applied in the extraction of weak surface

waves.

Phase detection of teleseismic short-period bodyw&ves was I
found to be unfeasible, due to the interference of early-

* arriving secondary signals. Therefore, short-period P-wave

detection and timing are performed essentially by envelope

peak detection; instantaneous frequency measurements are also

used in the timing process. Tested on a small data base,

this method resulted in 81% to 94% detection at 7 to 20 false

alarms per hour, with signal-to-noise ratio thresholds of

2 to 3 dB. The RMS timing error, relative to analyst picks,

was 0.21 seconds, comprising 84% of the test cases; this

timing error apparently was independent of the signal-to-

noise itio. In some cases, however, noise can obscure the

true signal onset for the analyst as well as for the

automatic timing algorithm. Emergent signals may cause

timing errors of several seconds. Measurements of the
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Unger (Continued)

instantaneous frequency permit analysis of the delay times

of secondary signals partially overlapping with earlier

primary signals, down to the primary signal detection level.

Simultaneous measurements of the mean instantaneous fre-

quency and the amount of instantaneous phase fluctuation over

the first few seconds after the short-period primary signal

onset provided significant separati1.i between the populations

of shallow Eurasian earthquakes, Russian presumed nuclear

explosions (including peaceful explosions), and Nevada Test
Site presumed nuclear explosions, even at signal-to-noise

ratios below 0 dB.

Vanderkulk, W., F. Rosen and S. Lorenz (1965), "Large Aperture Seismic
Array Signal Processing Study," IBM Final Report, ARPA Contract SD-296,
International Business Machines, Rockville, Maryland

Abstract: This report presents the results of a five-month study,
entitled "LASA Signal Processing Study" (SD-296), performed

by IBM for the Advanced Research Projects Agency to:

1. Define the Large-Aperture Seismic Array (LASA) signal

processing requirements.

2. Specify the characteristics of equipments required to

implement the processing requirements.

.Define an experimental program to calibrate and evaluate

the signal processing equipments.

Section 1, System Description, fulfills the requirements

evaluates those parameters whose physical values determine

the numerics of the LASA processing requirements and
complements Section 1.

I Section 3, Processing System Configuration, fulfills the

requirements of item 2 by describing the overall system

in terms of realizable digital hardware.
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Vanderkulk (Continued)

Within Section 4, Special Problems, fulfillment of item 3,
through the subsection entitled Experimental Steering Delay
Determination, is obtained. In addition, other topics of
interest are Incluled to indicate specific areas of study
that the work accomplished has identified. Within the

mathematical appendixes are included the pertinent analytical

studies performed, together with detailed program listings
and numerical examples.

Section 5, Conclusion and kacommendations, outlines the next
logical steps in a program designed to acquire a LASA signal

processing capbility.

! i
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